Step 1 I can give out objects fairly		(T) In twos, share out 6 objects one by one.
Step 2 I can count how many each person was given		Repeat step 1 but make sure each person has the same amount.
Step 3 I can share an even number of objects between two people		(T) In threes, one person shares an even number of objects and checks that they have the same amount.
Step 4 I can halve an even number of objects		(${ }^{\top}$ Split the objects into two piles.
Step 5 I can share 6, 9, 12 or 15 objects between 3 people	$0_{0}^{\text {(1) }} 0_{0}^{0} 0_{0}^{0} \cdot 0_{0}^{0}$	(T) Same as step 3 but share 6, 9, 12 or 15 objects between 3 people.
Step 6 I can share 6, 9, 12 or 15 objects into 3	$0_{0}^{\text {®® (®) }}$	Repeat step 5 but split into 3 piles.
Step 7 I can share $8,12,16$ or 20 objects between 4 people		© In fives, share 8,12,16 or 20 objects to 4 people.
Step 8 I can share 8, 12, 16 or 20 objects into 4		© Same as step 7 but split into piles.
Step 9 I can share equally to solve division problems	$6 \div 2=$	Same as steps 4,6 and 8 . Share different objects.
Step 10 I can make groups of 2,5 or 10	Count out 3 groups of 2 for 6 objects.	Repeat but count out 2 groups of 5 for 10 objects.
Step 11 I can find how many altogether by counting through each group		(T) Put objects into 3 groups and count how many altogether.

Step 12 I can find how many altogether by counting in $2 s, 5 s$ or 10s	$\omega^{2} n^{2} n^{2} n^{2}$ NT NT NT NT N2 $\operatorname{HO}_{2}^{2} n^{2} n^{2} n^{2}$ $\operatorname{con}^{2} \operatorname{st~}^{2}$	Count in $2 s, 5 s$ or $10 s$ to see how many altogether.
Step 13 I can arrange a division number sentence	Use objects to show $8 \div 2=4$ $\omega^{2} \sin ^{2}$ $)^{2}$	Use objects to show $12 \div 3=4$
Step 14 I can solve a division number sentence with objects	Draw counters to show groups of 4 . $20 \div 4=5$ groups of 4	Draw counters to show groups of 6 . $18 \div 6=3$ groups of 6
Step 15 I can solve division, using objects (with remainders)	Draw counters to show groups of 3 . $14 \div 3=$ How many left over?	Draw counters to show groups of 4. $17 \div 4=\quad$ How many left over?
Step 16 I can use a Tables Fact to find a division fact (2, 3, 4, 5x tables)	$\begin{aligned} & 3 \times 5= \\ & 15 \div 5= \end{aligned}$	$\begin{aligned} & 4 \times 6= \\ & 24 \div 6= \end{aligned}$
Step 17 I can use a Tables Fact to find a division fact (with remainders) (2, 3, 4, $5 x$ tables)	$11 \div 2=$	$22 \div 3=$
Step 18 I can combine 2 or more Tables Facts to solve division ($2,3,4,5 x$ tables)	$60 \div 5=$	$39 \div 3=$
Step 19 I can combine 2 or more Tables Facts to solve division (with remainders) (2, 3, 4, 5x tables)	$38 \div 3=$	$66 \div 5=$
Step 20 I can use a Tables Fact to find a division fact ($x 6,7,8,9$)	$36 \div 6=$	$35 \div 7=$
Step 21 I can use a Tables Fact to find a division fact (with remainders) $(x 6,7,8,9)$	$47 \div 8=$	$75 \div 9=$

Step 22 I can combine 2 or more Tables Facts to solve division ($\times 6,7,8,9$)	$78 \div 6=$	$91 \div 7=$
Step 23 I can combine 2 or more Tables Facts to solve division (with remainders) ($\times 6,7,8,9$)	$65 \div 8=$	$83 \div 9=$
Step 24 I can use a Smile Multiplication fact to find a division fact	$450 \div 5=$	$140 \div 7=$
Step 25 I can use a Smile Multiplication fact to find a division fact (with remainders)	$152 \div 5=$	$271 \div 3=$
Step 26 I can solve a $4 \mathrm{~d} \div 1 \mathrm{~d}$ (using any table) with no remainders in the answer	$3555 \div 5=$	$7147 \div 7=$
Step 27 I can solve any 4d \div 1d and interpret the context of the remainder	$6574 \div 5=$	$1237 \div 6=$
$\begin{gathered} \text { Step } 28 \\ \text { I can solve any } \\ 3 \mathrm{~d} \div 2 \mathrm{~d} \end{gathered}$	$414 \div 12=$	$765 \div 54=$
$\begin{aligned} & \text { Step } 29 \\ & \text { I can solve any } \\ & 4 d \div 2 d \end{aligned}$	$6578 \div 15=$	$8483 \div 21=$
Step 30 I can solve division with decimal places in the answer	$417 \div 4=$	$914 \div 11=$
Step 31 I can solve 2d.1dp $\div 1 \mathrm{~d}$	$17.6 \div 8=$	$83.9 \div 6=$
	$24.45 \div 5=$	$38.406 \div 3=$
Step 33 I can solve $2 / 3 d .2 / 3 d p \div 2 d$	$45.75 \div 15=$	$76.452 \div 23=$

